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Abstract-A conically self-similar solution of the Boussinesq equations is reported. Thermogravitational 
convection near a quadrupolar point singularity of a temperature field is studied. At a Prandtl number of 
zero the solution loses its existence when the Grashof number achieves some critical value. If the Prandtl 
number differs from zero, then the solution exists at any Grashof number but, when the Prandtl number 
tends to zero, the passage to the limit can become nontrivial. At subcritical Grashof numbers, a strong 
upward jet is developed. A number of problems are studied in which the flow region is bounded by a 
conical surface. These problems may serve as simple models of convection near a volcano, a glacier, and 

an iceberg. 

1, INTRODUCTION 

THERE ARE practically no exact solutions of Bous- 
sinesq equations. An exception is the problem of free 
convection between parallel planes having different 
temperatures [l]. In this case the equations become 
linear, and the thermal problem is solved separately. 
This example is very simplified and does not reflect 
the interaction between inertial and diffusive mech- 
anisms of momentum and energy transfer which may 
lead to paradoxical effects. 

Such effects take place in a conically similar class of 
Navier-Stokes equations. Under certain conditions, a 
vorticity is concentrated drastically near the symmetry 
axis and the solution loses its existence because of the 
appearance of a singularity [2, 31. This phenomenon 
was revealed for complete Navier-Stokes equations 
but not for their boundary layer approximation. 

As a rule, the free convection problems are solved 
just in the boundary layer approximation [4] and by 
the method of matched asymptotic expansions IS]. 
They comprise the problem of convection near a point 
heat source [6-81. In the present work, complete 
Boussinesq equations are considered. 

In the conically similar class, velocity components 
vary in inverse proportion with the distance to the 
coordinate origin, u * l/R, therefore for the sake of 
self-similarity the buoyancy force must be propor- 
tional to R-‘. This dependence takes place if the 
temperature field has a quadrupolar point singularity. 
Though this statement of the problem seems rather 
artificial at first sight, it can serve as a simple model 
for a number of natural processes, such as convection 
near a volcano or a glacier, a cold wind from an 
iceberg in an ocean, and convection in a conical crater. 

Due to its relative simplicity, the self-similar prob- 
lem admits some analytical study. At the same time it 
includes such strong non-linear effects as the flow 
separation and collapse of vorticity and heat which 
are typical for conical flows of a viscous fluid. 

2. REDUCTION OF THE BOUSSINESQ 

EQUATIONS 

For the conically similar class of viscous incom- 
pressible fluid flows the velocity and pressure fields 
are sought in the form 

UR = -$(x)/R; ug = -vy(x)/(Rsin@ 

p = pX +prv2q(x)/R2; x = cost?. (1) 

Here (t, 0, rp) are the spherical coordinates. The axi- 
symmetric case is considered 

Ue = alap = 0 

where rp is the axial angle, 0 is the angle between 
the radius-vector and the symmetry axis, the prime 
denotes differentiation with respect to x, and L’(X) is 
related to the Stokes stream function as JI = vRy. 

The temperature field is defined as 

l- = T, +79(x)/R’. (2) 

The substitution of equations (1) and (2) into the 
Boussinesq equations (91 yields the system of ordinary 
differential equations 

(I- _+,’ - 2_TJ/’ -($)“/2-y2/(l -x2) 

-GrxS = Zq 

(1 -.r’)q’+(l -x’))“‘f_Y/ 

-x$/(1 -x2) = (1 -x*)Gr3 

(1 -x73” - 2x3’ + 63 = Pr(yS’+ 3~‘s) 

W 

(3b) 

(3c) 

where Gr = p;g/v’ is the Grashof number. Elim- 
inating q from equations (3a) and (3b) gives 

(1 -x’)$“‘-4xy”‘.“‘((y*/2)“‘= Gr(x9’+33). (4) 

It is convenient to define F(x) as 

F”‘= Gr(x3’+33); F(1) = F’(1) = F”(1) = 0. 

(5) 

1475 



1476 hl. A. GOLDSHTIF and V N. SHTEHV 

NOMENCLATURE 

A, a. b, b,. bz, b3, C numerical constants Greek symbols 
F, J Jo. f, auxiliary functions scale factor 

9 acceleration of gravity ; coefficient of thermal expansion 
Gr, Gr, Grashof number and its critical .I 

b 
coefficient in the function T(R) 

value scale factor 

GrQ Grashof number based on heat flux E.&I small parameters 
Gr,, Gr,, Grr, Gr; lower and upper V boundary layer coordinate 

estimates of Gr, and - Gr, 0 spherical coordinate, angle between the 

P pressure symmetry axis and radius vector 
Pr Prandtl number 9 dimensionless temperature 

Q heat flux 30 regular solution at Pr = 0 

4 dimensionless pressure E. thermal conductivity 
R spherical radial coordinate 1’ kinematic viscosity 
r cylindrical radial coordmate P denstty 
T temperature 5 shear stress 

UR, Utlr u, spherical components of velocity spherical coordinate, longitude 

U, radial cylindrical velocity ; Stokes stream function. 
II, I$’ auxiliary functions 
.r auxiliary argument 
.Q’ .Kp, .Vu, .r , positions of pole J(X), Subscripts 

separatrix. wall, of the zero off(r) 5 parameters of ambient medium 

J dimensionless stream function S separation parameters. 

?‘I solution of linearized problem 

11, YO main terms of inner and outer 
expansions Superscript 

Z vertical axis (axis of symmetry). differentiation. 

Then equation (4) can be integrated three times to 
give 

(l-.rz)).‘+2.rq’-_?/2 = F(x)-C(l-x)* (6) 

where the integration constant C has to be found 
from boundary conditions. While integrating (4) the 
requirements of solution regularity at .Y = 1, y( 1) = 0, 

Ip’(m)j c c;o are used. 

3. THE CASE Pr=O 

At the Prandtl number equal to zero, the energy 
equation is separated from the system. Eauation (3~) 

I 

Suppose the flow region is bounded by a conical 
surface, i.e. .Y 2 x,, and the adherence conditions are 
to be satisfied J(L) = .~‘(.TJ = 0. Then according to 
equations (6) and (9). C= l/4 Gr .Y,(1+x,)*, and 
equation (6) may be rewritten as 

(I -.r’)_r’+2s,r-_r2/2 = Gr/4(1 -.r)‘f(x) 

f(x) = x(1 +.q-&(I +.r,)?. (10) 

When [Grl cc 1. the last term on the left-hand side 
of equation (10) may be neglected, and then the solu- 
tion is found explicitly 

_r=,rL(_y) = Gr/8(1-.~)(l_tx+2.~,)(.r-.r,)‘. (11) 

yields When x, 2 - l/3, the flow has a one-cellular struc- 

(1 -.r’)3”-2xX+63 = 0. 

The regular solution of equation (7) is 

3 = 3,(X) = 3x2 - 1. 

The function 9&r) changes its sign in 

(7) 
ture. It is ascending for Gr > 0 and descending for 
Gr < 0. With .vu < - l/3 the flow has a two-cellular 
structure. The interface surface equation is 

(8) 
.Y = X, = - 1 -2X,. 

the interval At X, = - 113, .Y, = -l/3, when .T* ---* - I and 

- 1 < .K < 1. When Gr > 0, then the temperature in .Y, + 1, this means that with a decrease of the cone 

the cone 1.~1 > l/J3 is greater than the ambient tem- angle, the reverse flow (separation) first originates 

perature; when Gr c 0, the opposite is true. Sub- only near the cone surface; thereafter, the recir- 

stituting equation (8) into equation (5) and in- culation region becomes wider, and at .rw = - 1 (a 

tegrating one finds quadrupole in an infinite medium) the flow is descend- 
ing throughout for Gr > 0 and ascending for Gr < 0. 

F = Grx(l -s’)‘/4. (9) If the Grashof number is not small. the separation 
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occurs as before when x,, decreasing, passes the value 
-l/3. For this to be verified, use will be made of 
the fact that the wall friction becomes zero at the 
parameters corresponding to separation. The shear 
stress is proportional to y”(x,) 

Tw = -y”(x,)pv2/R2. 

Differentiating equation (10) once and substituting 
x = x,, with regard for y(xJ = f(x,J = 0, yields 

y”(x,) = Gr/4( 1 +x,)( 1+3x,) 

from which it is seen that y”(xJ changes its sign at 
x, = -l/3. 

The analysis of the solution properties in the case 
of [Grl 2 1 is alleviated by the substitution of [3] 

)‘= -2(1 -x?)U’/U (12) 

into equation (10) which is thus reduced to a linear 
relationship 

Gr f (-4 
U"+8(~+,~)2"=o (13) 

U(x,) = 1; U’(x,) = 0. (14) 

The condition CJ’(x,) = 0 follows from J(x,J = 0 and 
from equation (12). Normalization, V(x,) = 1, is 
made without loss of generality. Thus, there is an 
initial value problem for V(K). This has a single solu- 
tion according to the well-known theorems. 

For the existence of the regular solution y, it is 
necessary and sufficient that U would not turn to zero 
in [x,, 11, since the zero value of tr(x) is the pole of 
y(x). At Gr = 0, CJ = 1. Therefore, when IGrj cc 1, 
the curvature I U”(x)] << 1 and therefore the first zero 
of u(x) (if it exists), x,,, is placed far from the interval, 
xp >> 1. However, with an increase of IGrl, the value 
of x, decreases and may pass 1. 

First, the case x, 2 - l/3 will be considered, then 
f(x) > 0 when x L ,r,. This yields Ll”(x) 3 0, 
V’(x) b 0, LI(x) 2 1 when Gr < 0, which means that 
the function V(x) has no zeroes and the solution y(x) 
exists for any Gr c 0. In this case y(x) c 0 and the 
flow is downward. 

The situation is different when Gr > 0. Problems 
(13) and (14) may be transformed to the integral 
equation 

z f(x) c’(x) dy. (15) 

Since the function V(x) decreases in the interval [x,, 
I] and CI”(x) c 0, it is located within the following 
limits. 

Using these estimates and the fact that U(1) = 0 at 
Gr = Gr,, it is possible to find from equation (15) that 

Gr, < Gr, < Gr, 

Gr, = 8(1-x,) & +2b,(ln4-l)-b2-h3 

b, = x,(1+x,) 

b 

2 
= a3 - 2-L) 

6 1 

+b,[(3+x,)ln(l+x,)l-1-x,]-b,x,. 

When Gr < Gr,, the regular solution p(x) is known to 
exist, and when Gr > Gr, it is known to be absent. 

If x, < -l/3, then the estimates are more soph- 
isticated because f(x) alternates in sign. An exact 
value of Cr.,, can be found numerically by integrating 
(13) and by selecting Cr.,, so that CI( 1) = 0. The results 
of calculation with the analytical estimates are pre- 
sented in Fig. 1. When x,,. + - 1, the function Gr,(x,) 

has an asymptotic form Gr, = 3 1.4,‘( 1 -x,)‘. 
At x, = 0 problem (13) is simplified to 

(I~~,+-0; Li(0) = 1; Ii’(O) = 0. 

Its solution is the Airy function [IO] and can be pre- 
sented in the form of a regular series 

; a0=1 

a. = 2a,_ ,/[n(3n- I)] ; n = 1,2,. . . . 

The value U(1) turns to zero at Gr = Gr, = 62.7. 
Now we will find what physical phenomena are . _ 

associated with the appearance of singularity For .x 

10 
r .//I 

-1 -l/3 0 1 
a, 

where FIG. 1. Map of convection regimes at Pr = 0. 
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close to xp, one may write 

U(x) = U’(x,)(x-.~~)+1/6U”‘(xJ(.~-x~)~+~~~ 

whence, due to equation (12) 

y(.&$ IfL’“‘ox x 

.K [ 
3LI’(_K,)( - d2+... . 

1 

At xp = I the following equation is obtained : 

)‘=y&) = 2(1+x)+0[(1-x)*]. 

Thus, y(x) remains bounded at critical parameters, 
but y,(l) = 4, i.e. the non-permeability condition is 
broken down and a fluid sink is formed at the axis. 
Since in the subcritical case y( 1) = 0, then the deriva- 
tive y’(l) -+ - z when Gr + Gr,. Now, introducing 
the small parameter E = - l/~,‘(l) and the new vari- 
able q = (l- X)/E, and after substitution of the argu- 
ment in equatioli (10) and the limiting transition E + 
0, the following equation can be obtained for the axial 
boundary layer: 

tJy: = ?‘> -y”/4 ; y,(O) = 0 

where yI is the main part of the inner asymptotic 
expansion of y. 

The solution y,(q) = 4~/(4+~) coincides with the 
well-known Schlichting solution for a round sub- 
merged jet [I 11. 

Thus, at subcritical parameters a strong upward jet 
is formed near the axis. At Gr = Gr, it collapses when 
the axial velocity and the jet momentum become in- 
finite, but the external velocity field remains finite 
and corresponds to the flow induced by the sink at 
the axis. Mathematically it is related to the leading 
term of the outer asymptotic expansion in terms of 
&:y =uo(s)+&4’0,(.T)+.... 

In the range - 1 < x, < - l/3 the collapse is also 
possible when Gr c 0. This may be found analytically. 
The function f(x) is negative in [x,, xl) and positive 
in (x,, I] where 

x, = 1,/2[-x,(4+3x,)]’ ‘--1-x,/2. 

Therefore, for the near-collapse situation U(x) has 
the following bounds: U < 1 for x, < x < 1 and 
c’ 2 (x, -X)/(-Y, -.u,) for I, < .Y < x,. 

Let 

fo(f) =f(t)(x, -t)/(l+t)’ 

and 

f,(f) =f(f)(l-0l(l+0*. 

The lower estimate will be found for the quantity 
IGr,l. One has 

Y’ 0 = U(l)-IGr*l/8 
s 

If,ICJdt 
5 

+IGr,l,‘8 ‘f,Udr> I-lGr,l/8 
I Ti s 

r:’ If 1 I dt. 

While forming the inequality, the function U in the 

first integral is replaced by 1 and the second integral 
is discarded. Hence, IGr,l 2 Gr,- where 

1 +x, -I 
+b, In- 1 _ r +2x,(x, -x,)(1 +x,)/(1 fx,) 

1 
. 

- I 

The upper estimate will be 

0 < U(x,) = 1 -Gr,/8 

Hence, IGr,l < Gr;, where 

Gr; = 966/(1+.~,)~{12x,[b’+2b 

-2(l+b)In(l+b)]-3(.u,+x,)b’j-‘: 

b = (x, -x,)i(l +.Y*). 

Particularly, at I, = - 1, Gr; = 9.6 < IGr,l < 32 
= Gr; ; Gr, o - I1 and when xu + - l/3, one may 
see that IGr,l+ x) and, asymptotically, 2 c IGr,sil 
c 96, where E, = - l/3 -I, (Gr, z -276:). 

The results of numerical calculations (solid line) 
and analytical estimates (dashed lines) are shown in 
Fig. I. At the critical parameters, L’ 2 0 and Ii’ ~2 0. 
and the flow is upward throughout. These regimes 
also persist in the neighbourhood of the boundar} 
curve for the solution’s existence in the parameter 
plane. The upper boundary of this region is shown by 
a thin curve S in Fig. 1. For this boundary y’(l) = 0. 
When the curve S passes from left to right, a re- 
circulation flow region appears near the axis with 
downward movement. There is a conical surface 
which separates the two cells of the flow. The angle 
of the cone increases with .K* and at I, = -l/3 the 
cone touches the wall. When _K,, > -l/3, the con- 
vection has a one-cellular structure. 

In the range - l/3 < x, < 1. the value of -Gr ma} 
be arbitrarily large. Then 1.~1 becomes large and the 
linear terms on the left-hand side of equation (IO) 
may be neglected in the flow core, i.e. F =: y&u) where 

yO(.K) = -IGr,‘2)’ 2(1-.K)[.K(~+.K)--.K,(~+.K,)‘]’ ‘. 

At .K = 1 the function y,(.K) turns to zero and has 
a bounded derivative. At the wall the function y,(.u) 

is also zero, but I &(x)1 -+ y: when .K 4 .K,.,. Conse- 

quently. there is a boundary layer near the wall. To 
form the boundary layer equations. new variables 
have to be introduced 

.K=.K,+dq; )‘= -Xlt 

Substituting the above variables in equation (10) 
and letting (Grl + ZC, it is possible to obtain 
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0 0.1 1.0 

w’ 

FIG. 2. Asymptotic velocity distribution for a near-wall jet. 

dw/dq = w’ = q- w2/2 ; w(0) = 0. 

The solution of this equation can be expressed 
explicitly in terms of the Airy function. The quantity 
w’ reaches its maximum value of 1.03 at tf = 1.5 (Fig. 
2). Thus the near-wall jet is developed with the 
maximum velocity m ]Gr] 2/3 and with ~1 JGr) - ‘13. 

4. THE QUADRUPOLE ON THE PLANE 

Now, the problem will be considered at Pr # 0 for 
the upper half-space, 0 < x 6 1. Because of the 
quadrupolar type of singularity, the values of the 
functions 9(l) and 9(O) have opposite signs. When 
9(l) > 0 the problem may serve as the simplest model 
of heat convection near a volcano, and with 9(l) < 0 
as that near a glacier. 

From equation (5) it follows that 

2F(O) = 
i 

x2F”dx = Gr ’ (x39)‘& = Gr9(1). 
0 I 0 

Substituting x = 0 and y = y’ into equation (6) yields 
C = F(0) = Gr 9( 1)/2. The selection of some tentative 
value of y’(1) gives an initial-value problem for the 
system of equations (3c), (5), and (6). This has to be 
integrated from x = 1 and 0. The regularity require- 
ments at x = 1 yield 

9’(l) =39(1)(1-Pry’(l)]; 

Y(1) = 9’(1)[1-Pry’(l)]-3/4PrLJ(l)y”(l); 

y”(l) = y’(l)[l-y’(l)/2]-Gr9(1)/2. 

The quantity y’(l) must be selected (by shooting) 
in such a way that after the integration it can satisfy 
y(0) = 0. Then, the renormalization of 9 and Gr was 
made so that the function g(0) could be equal to - 1. 
The regime map is shown in Fig. 3. When Gr < 0, the 
flow is downward and when IGrl a> 1 a near-wall jet 
is developed. Unlike the case Pr = 0, the thermal 
boundary layer also appears in addition to the 

200 

100 

6r 

0 

1 
2 

1, I 

b+Lc i 
V 

&&k_ 

! 

! L 
-100 L 

0 0.5 1 .o 
Pf 

FIG. 3. Map of convection regimes at x, = 0. 

dynamic layer (Fig. 4; r = R sin 9, z = R cos 8, 

a, = - v/r[( 1 - x’)y + xy] is the horizontal velocity). 
When Gr > 0, there is a region on the plane {Pr, 

Gr} which corresponds to upward convective motion. 
This region is bounded by curve S in Fig. 3. As Gr 
increases, separation and flow reversal occurs near the 
wall. The separation is due to the unfavourable effect 
of the pressure gradient. The pressure distribution 
over the wall is governed by the value y”‘(O), as follows 
from equations (1) and (3a) and the boundary con- 
ditions : 

p = pr +y”(0)pv2/(2R 2). 

A simple, but rather cumbersome, analysis shows 
that y”‘(O) = 3/32Pr Gr’+O(Pr Gr’) near the axes 
Pr = 0 and Gr = 0. Consequently, the pressure 
increases as the symmetry axis is approached and 
makes the convergent motion near the plane difficult. 
When Pr = 0, the separation happens at Gr = Gr, 
= 88. With an increase of Pr, Gr, decreases and, 
asymptotically, Pr Gr, = Ra, x 16. If Pr is fixed and 
Gr increases, the angle of the separating cone (see 
the sketch above curve S in Fig. 3) decreases and 
except for a narrow region near the axis, the flow is 
downward just as for Gr = 0. Physically this means 
that the heat of a volcano is entrained by an upward 
jet and a cold wind blows near the surface just as in 
the case of a glacier. 

5. THE NON-TRIVIAL LIMIT IN THE CASE OF 

Pr+0 

If Pr # 0, the solution exists at any value of Cr. 
Curves 1 and 2 in Fig. 3 relate to fixed values of y’( 1) 
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FIG. 4. Vertical distribution of temperature (--) and of horizontal velocity (--), I, Pr = 0, Gr = -200; 
2, Pr = 0.7, Gr = -35. 

(1, y’(l) = -460.5; 2, y’(1) = -3000). The curves 
y’(l) = const. tend to the half-axis Pr = 0, Gr 
2 Gr, = 62.7 when y’(1) + --co. If Gr is fixed and 
Pr + 0, then with Gr < Gr, the limiting distributions 
of velocity and temperature coincide with the dis- 
tributions at Pr = 0. 

However, the situation is different when Gr > Gr,. 
The evolution of y(x) and 9(x) is shown in Figs. 5 
and 6. Curves 1 and 2 correspond to the intersection 

4r 

Y 

0 

-1 
0 0.5 1.0 

FIG. 5. Profiles of y(x) at Gr = I, Pr = 0.063 (I), 0.04 (2) 
and the limit profile for Pr - 0 (0,). 

v 2- 

1 
0.5 1.0 

I 

FIG. 6. Profiles of temperature. Notation is the same, but the 
curve 0 corresponds to the regular solution at Pr = 0. 

of curves 1 and 2 in Fig. 3 with the line Gr = 150. As 
Pr decreases, a jet is formed near the axis just as in 
the case with Pr = 0 and Gr -+ Gr,, but when Pr = 0, 
y > 0 and the flow is upward. In the case of Gr = 150 
and Pr + 0, the limiting function y(x) changes its sign 
in the interval (x,, 1) (curve 0, in Fig. 5). A more 
interesting metamorphosis takes place with S(x). Its 
distribution for Pr cc 1 differs drastically from that 
for Pr = 0 (curve 0 in Fig. 6). The calculations show 
that as Pr decreases, $( 1) grows without bound. 

To understand the reason for this behaviour, con- 
sider the energy equation (3~). If x # 1 is fixed, the 
convective terms tend to zero when Pr + 0. But with 
Pr -+ 0, y’( 1) + -co and the limiting y’(x) acquires 
singularity of the Dirac function type with the factor 
4. Therefore when Pr + 0, the convective heat transfer 
remains predominant although in the gradually reduc- 
ing axial region. In the limit, a heat source is formed 
at the axis. 

To take into account this phenomenon, referring to 
equation (7), which relates to the case Pr = 0, and 
considering not the regular but the common solution, 
which is 

3 = 3x2 (3x’-l)lnE-6x 1 (16) 

where the normalization 9(O) = - 1 is used, the solu- 
tion has a logarithmic singularity at x = 1. Physically 
this means that there is a heat source at the axis. The 
coefficient A can be found as follows. Substituting 
equation (16) into equation (5) and integrating gives 

F(x) = $(*-.Y2)2[x--A(2-xln~)]. 

Due to the singularity of 9(x), the condition 
F”( 1) = 0 is conserved only for the analytical part of 
F(x) and a symmetry condition is used for the singular 
part. Then taking into account that C = F(0) = -A 
Gr/4, we obtain from equation (6) the equation for 
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A 5- 

FIG. 7. Dependence of the coefficient of the logarithmic 
singularity in equation (16) on the Grashof number at 

Pr = 0. 

the main part y&x) of the outer asymptotic expansion 
y=,V,(x)+&y,(X)+‘..: 

(1 -x’)yb+2xy,-y,2/2 = Grx(1 -,x2)2/4 

+AGr 
x(1 -xq2 

4 
lnl+x 

l-x 

(1 -x2)2 -~ 
2 

+ (1 -x)2 
- . 

2 1 (17) 

This equation has to be integrated with the con- 
ditions ~~(1) = 4; y,(O) = 0. The differentiation of 

A certain physical interest attaches to the problem 

equation (17) and substitution of x = 1 yields 
when the conical wall has a uniform temperature and 
there is a heat source at the coordinate origin. If 

y:( 1) = 2. Then equation (17) can be integrated from Pr = 0 or IGrj cc 1, such a situation is realized inside 
x = 1 as an initial-value problem, and A can be selec- 
ted (by shooting) so as to satisfy y,(O) = 0. The func- 

a cone with the angle corresponding to x, = 

tion Gr(A) is found numerically and is shown in Fig. 
l/J3 z 0.58. In this case the source strength may be 

7. The solutions, corresponding to the lower branch 
characterized by the quantity QR2 where Q is the heat 

of the curve, are limits for the solutions with Pr + 0. 
flux through a part of the spherical surface of radius 

In Fig. 6 the distribution of 8(x) for Pr = 0.04 is 
R bounded by the cone x = x,. The QR’ value is 

graphically indiscernible with the solution of equations 
independent of R. A decrease in the heat flux with the 

(16) and (17) at Gr = 150. 
growth of R is caused by heat loss through the side 
wall of the cone. 

Differentiating (17) and taking x = 0 one finds that 

y:(O) = Gr(l/4-A); J$’ = y:(O) = SAGr. 

Hence, the unfavourable pressure gradient increases 
with A. At A = l/4 the value y:(O) changes its sign 
and separation occurs. 

It is seen from Fig. 7 that if Gr is sufficiently large 
(Gr > 202), solutions with logarithmic singularity are 
also absent. Numerical analysis indicates that in this 
case the singularity at x = 1 becomes more sharp than 
the logarithmic one in the limit Pr -+ 0. 

Let the Prandtl number be fixed and equal to 
Pr = 0.7. For any Gr one may find such x, that Q(xJ 
could be equal to zero and 8(x) could have a uniform 
sign in (x,, 1). The value of x, tends to 1 when 
Gr-rm, and x,+0 when Gr-, -a. With X,C 1 
the flow structure is the same as in Fig. 4 (curve 2) 
with the difference that the temperature turns to zero 
at the wall. This problem seems to model air con- 
vection near an iceberg in the sea. 

The curve in Fig. 7 bounds on plane {Gr, A} the 
region of solution existence for another problem 
when, besides the quadrupole, there is a linear source 
of heat at the axis and A is a factor of the heat flux 
from the axis. Solutions which satisfy y(1) = 0, 

For the opposite case x, >> 1, the pattern of con- 
vection in a conical crater 0.9442 = x, < x Q 1 at 

GrQ = j3gQR ‘/(1v2) = 29 651 is shown in Fig. 8. 
Obviously, the stringent dependence x,(Gr) im- 

posed by the self-similarity restricts the applications 
of this problem. However, a viscosity v may be 
assumed as an eddy using the Boussinesq turbulence 

FIG. 8. Free convection in a cone with an isothermal wall 
induced by a heat source at the vortex. The isotherm (I). the 
stream line (2) and the angular distributions of radial velocity 

U, and temperature 9 are typical. 

ly’(l)l < co exist in the region located to the left of 
the curve. 

6. CONVECTION WITH THE SIGN-DEFINITE 
TEMPERATURE FIELD 
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model. Then, taking into account the tendency of 
turbulent flows (particularly jet-like) to be self- 
similar, it is possible to assume that the turbulent 
Grashof number (i.e. turbulent viscosity) is such that 
the self-similarity can be fulfilled. In this sense the 
above problem may serve as a model of turbulent free 
convection in a conical crater. 

greater or smaller throughout than that in the ambient 
medium. For any value of the conical crater angle, a 
quite definite Grashof number is found which can be 
treated as an invariant of the turbulent regime. 

Though the solutions reported are physically inter- 
preted where possible, they may serve only as very 
simplified models of the natural processes mentioned. 
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CONVECTION NATURELLE PRES DUN QUADRIPOLE THERMIQUE 

R&m&--On considere une solution coniquement afhne de I’equation de Boussinesq en etudiant la con- 
vection thermogravitationnelle pres dune singularite quadripolaire d’un champ de temperature. A un 
nombre de Prandtl nul, la solution perd son existence lorsque le nombre de Grashof atteint quelques 
valeurs critiques. Si le nombre de Prandtl differe de zero, la solution existe pour un nombre de Grashof 
quelconque mais lorsque le nombre de Prandtl tend vers zero, le passage a la limite peut ne pas Otre trivial. 
A des nombres de Grashof subcritiques se developpe un fort jet ascendant. On etudie un certain nombre 
de problemes dans lesquels la region d’ecoulement est limitie par une surface conique. Ces problemes 

peuvent servir de modtles simples de convection pres d’un volcan, d’un glacier et d’un iceberg. 

FREIE KONVEKTION IN DER UMGEBUNG VON VIER PUNKTFORMIGES 
WARMEQUELLEN 

Zusammenfassung-Eine konische, selbst lhnliche Losung der Boussinesq-Gleichung wird vorgestellt. 
Die temperaturbedingte natiirliche Konvektion in der Umgebung von vier singularen Punkten in einem 
Temperaturfeld wird untersucht. Fib die Prandtl-Zahl null existiert bei einem bestimmten kritischen Wert 
der Grashof-Zahl keine Losung. Wenn die Prandtl-Zahl grdl3er als null ist, existiert fiir alle Grashof-Zahlen 
eine Losung; nur wenn die Prandtl-Zahl gegen null strebt. kann im Grenzbereich die Losung mehrdeutig 
werden. Wenn die Grashof-Zahl unterhalb des kritischen Wertes bleibt, bildet sich eine starke Auf- 
triebsstromung aus. Eine Reihe von Fallen wird untersucht. in denen die Striimung durch eine konische 
FlHche eingegrenzt ist. Diese FIlle kiinnen als einfache Abbildung der Konvektion in der Umgebung von 

Vulkanen, Gletschern oder Eisbergen dienen. 
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COBGOflHM KOHBEKU;M[R BEJlH3H TErtJIOBOI-0 KBAP[PYlIOIIR 

Amwr-lIony9e~o amoMonenbme Kow~ect~ CHMMeTpHVHOe pelueme ypamcwL rennoeoft LOH- 
BCKUilH 8 np~6nmc~im rij’CCUHCCK& &MKCHH~J EW~~IB%TCSI TOWfHOit OCO~CHH~IO IIOIIS TCMlICpa- 

Typbt Tma maApynoms.rIpw ¶xJIe ~~~n~paBHOM Hynlo,plucHHeTepacTcyutenno~e,rorAa 

'UlCJlO rpaCrO#Si AO'Zl%I'aeT KPUTH=ICCKOTO 3HaSeHHS. &JlH YXCJ’IO npiiHATAS HC pftSH0 HyJUO, TO 

~UiWH~CynrccTBytr lIpK BCCXSJliiX~paCW+i, HO I'IpCAutbHti ZIepCXOA, KOttlil ~HCAO ~piU!ATnf~ 

C'QICMHTCX L HyJllO,MO*erHOCiiTb HC’T&IUBliWfbHbf~ XapCiXTQ. B OKOJlO~lfTH~~KOii CHTyamH f#op~H- 

pycTcn CHAbHal ~ocxo~aum CI'pyn. Pacc~olpe~ pnn 3aAalr, B ro~opbu o6nacTb TC9eHHX orpaemesa 

XOHHWCKO~ IIOBepXHOCTbIO. OHH ~0rj-I CnymTb qmC'TetUIHMH .MOA~JIIIMH llo~~etum 86nH3H 
synraaa. nemwra wui aiic6epra. 
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